The Oberbeck-Boussinesq approximation in critical spaces

R. Danchina and L. Heb

aUniversité Paris-Est, LAMA, UMR 8050, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
raphael.danchin@u-pec.fr

bDepartment of Mathematical Sciences, Tsinghua University
Beijing 100084, P. R. China
lbhe@math.tsinghua.edu.cn

Abstract

This talk is devoted to the study of the so called Oberbeck-Boussinesq approximation for compressible viscous perfect gases in the whole three-dimensional space. Both the cases of fluids with positive heat conductivity and zero conductivity are considered. For small perturbations of a constant equilibrium, we establish the global existence of unique strong solutions in a critical regularity functional framework. Next, taking advantage of Strichartz estimates for the associated system of acoustic waves, and of uniform estimates with respect to the Mach number, we obtain all-time convergence to the Boussinesq system.